BOOK THIS SPACE FOR AD
ARTICLE ADIn the wild, it’s unlikely that you’ll find a website that has no protection against file upload attacks like we saw in the previous lab. But just because defenses are in place, that doesn’t mean that they’re robust. You can sometimes still exploit flaws in these mechanisms to obtain a web shell for remote code execution
When submitting HTML forms, the browser typically sends the provided data in a POST request with the content type application/x-www-form-url-encoded. This is fine for sending simple text like your name or address. However, it isn't suitable for sending large amounts of binary data, such as an entire image file or a PDF document. In this case, the content type multipart/form-data is preferred.
Consider a form containing fields for uploading an image, providing a description of it, and entering your username. Submitting such a form might result in a request that looks something like this:
POST /images HTTP/1.1Host: normal-website.com
Content-Length: 12345
Content-Type: multipart/form-data; boundary=---------------------------012345678901234567890123456
---------------------------012345678901234567890123456
Content-Disposition: form-data; name="image"; filename="example.jpg"
Content-Type: image/jpeg
[...binary content of example.jpg...]
---------------------------012345678901234567890123456
Content-Disposition: form-data; name="description"
This is an interesting description of my image.
---------------------------012345678901234567890123456
Content-Disposition: form-data; name="username"
wiener
---------------------------012345678901234567890123456--
As you can see, the message body is split into separate parts for each of the form’s inputs. Each part contains a Content-Disposition header, which provides some basic information about the input field it relates to. These individual parts may also contain their own Content-Type header, which tells the server the MIME type of the data that was submitted using this input.
One way that websites may attempt to validate file uploads is to check that this input-specific Content-Type header matches an expected MIME type. If the server is only expecting image files, for example, it may only allow types like image/jpeg and image/png. Problems can arise when the value of this header is implicitly trusted by the server. If no further validation is performed to check whether the contents of the file actually match the supposed MIME type, this defense can be easily bypassed using tools like Burp Repeater.
One of the more obvious ways of preventing users from uploading malicious scripts is to blacklist potentially dangerous file extensions like .php. The practice of blacklisting is inherently flawed as it's difficult to explicitly block every possible file extension that could be used to execute code. Such blacklists can sometimes be bypassed by using lesser known, alternative file extensions that may still be executable, such as .php5, .shtml, and so on.
Overriding the server configuration
As we discussed in the previous section, servers typically won’t execute files unless they have been configured to do so. For example, before an Apache server will execute PHP files requested by a client, developers might have to add the following directives to their /etc/apache2/apache2.conf file:
LoadModule php_module /usr/lib/apache2/modules/libphp.so AddType application/x-httpd-php .php
Many servers also allow developers to create special configuration files within individual directories in order to override or add to one or more of the global settings. Apache servers, for example, will load a directory-specific configuration from a file called .htaccess if one is present.
Similarly, developers can make directory-specific configuration on IIS servers using a web.config file. This might include directives such as the following, which in this case allows JSON files to be served to users:
<staticContent> <mimeMap fileExtension=".json" mimeType="application/json" /> </staticContent>
Web servers use these kinds of configuration files when present, but you’re not normally allowed to access them using HTTP requests. However, you may occasionally find servers that fail to stop you from uploading your own malicious configuration file. In this case, even if the file extension you need is blacklisted, you may be able to trick the server into mapping an arbitrary, custom file extension to an executable MIME type.
Modern frameworks are more battle-hardened against these kinds of attacks. They generally don’t upload files directly to their intended destination on the filesystem. Instead, they take precautions like uploading to a temporary, sandboxed directory first and randomizing the name to avoid overwriting existing files. They then perform validation on this temporary file and only transfer it to its destination once it is deemed safe to do so.
That said, developers sometimes implement their own processing of file uploads independently of any framework. Not only is this fairly complex to do well, it can also introduce dangerous race conditions that enable an attacker to completely bypass even the most robust validation.
For example, some websites upload the file directly to the main filesystem and then remove it again if it doesn’t pass validation. This kind of behavior is typical in websites that rely on anti-virus software and the like to check for malware. This may only take a few milliseconds, but for the short time that the file exists on the server, the attacker can potentially still execute it.
These vulnerabilities are often extremely subtle, making them difficult to detect during blackbox testing unless you can find a way to leak the relevant source code.